domingo, 31 de julio de 2016

Número de Reynolds "FLUJO LAMINAR Y TURBULENTO"

Número de Reynolds
"Flujo laminar y turbulento"


Reynolds (1874) estudió las características de flujo de los fluidos inyectando un trazador dentro de un líquido que fluía por una tubería. A velocidades bajas del líquido, el trazador se mueve linealmente en la dirección axial. Sin embargo a mayores velocidades, las líneas del flujo del fluido se desorganizan y el trazador se dispersa rápidamente  después de su inyección en el líquido. El flujo lineal se denomina Laminar y el flujo errático obtenido a mayores velocidades del líquido se denomina Turbulento.

 Las características que condicionan el flujo laminar dependen de las propiedades del líquido y de las dimensiones del flujo. Conforme aumenta el flujo másico aumenta las fuerzas del momento o inercia, las cuales son contrarrestadas por la por la fricción o fuerzas viscosas dentro del líquido que fluye. Cuando estas  fuerzas opuestas alcanzan un cierto equilibrio se producen cambios en las características del flujo. En base a los experimentos realizados por Reynolds en 1874 se concluyó que las fuerzas del momento son función de la densidad, del diámetro de la tubería y de la velocidad media. Además, la fricción o fuerza viscosa depende de la viscosidad del líquido. Según dicho análisis, el Número de Reynolds se definió como la relación existente entre las fuerzas inerciales y las fuerzas viscosas (o de rozamiento).


 Este número es adimensional y puede utilizarse para definir las características del flujo dentro de una tubería.
El número de Reynolds proporciona una indicación de la pérdida de energía causada por efectos viscosos. Observando la ecuación anterior, cuando las fuerzas viscosas tienen un efecto dominante en la pérdida de energía, el número de Reynolds es pequeño y el flujo se encuentra en el régimen laminar. Si el Número de Reynolds es 2100 o menor el flujo será laminar. Un número de Reynold  mayor de 10 000 indican que las fuerzas viscosas influyen poco en la pérdida de energía y el flujo es turbulento.Tambien se puede definir como el ratio entre las fuerzas inerciales y las fuerzas viscosas presentes en un fluido. Éste relaciona la densidad, viscosidad, velocidad y dimensión típica de un flujo en una expresión dimensional, que interviene en numerosos problemas de dinámica de fluidos. Dicho número o combinación dimensional aparece en muchos casos relacionado con el hecho de que el flujo pueda considerarse laminar (número de Reynolds pequeño) o turbulento (número de Reynolds grande).Para un fluido que circula por el interior de una tubería circular recta, el número de Reynolds viene dado por:o equivalentemente por:donde:: densidad del fluido: velocidad característica del fluido: diámetro de la tubería a través de la cual circula el fluido o longitud característica del sistema: viscosidad dinámica del fluido: viscosidad cinemática del fluido (m²/s)







FLUJO LAMINAR.
 A valores bajos de flujo másico, cuando el flujo del líquido dentro de la tubería es laminar, se utiliza la ecuación demostrada en clase para calcular el perfil de velocidad (Ecuación de velocidad en función del radio). Estos cálculos revelan que el perfil de velocidad es parabólico y que la velocidad media del fluido es aproximadamente 0,5 veces la velocidad máxima existente en el centro de la conducción 

FLUJO TURBULENTO.
 Cuando el flujo másico en una tubería aumenta hasta valores del número de Reynolds superiores a 2100  el flujo dentro de la tubería se vuelve errático y se produce la mezcla transversal del líquido. La intensidad de dicha mezcla aumenta conforme aumenta el número de Reynolds  desde 4000 hasta 10 000. A valores superiores del Número de Reynolds la turbulencia está totalmente desarrollada, de tal manera que el perfil de velocidad es prácticamente plano, siendo la velocidad media del flujo aproximadamente  o,8 veces la velocidad máxima.

EJEMPLOS:

 Por una tubería de 1/8 de pulgada (0.3175cm) de diámetro pasa aceite de motor. El aceite tiene una viscosidad  h = 30x10-3 N.s/m2, temperatura de  20°C y densidad de 0.8 gr/cm3,  descargando  a la atmósfera con un gasto de  0.1ml/s. Para medir la caída de presión en la tubería se colocan dos tubos manométricos separados una distancia  de 30 cm como se indica en la figura. Calcule:

a)      El No. de Reynolds.
b)      La caída de presión en cm de altura equivalentes entre los dos tubos manométricos.
       Solución inciso
 a): El No. de Reynolds.
La velocidad del flujo la obtenemos del gasto y el área de sección transversal de la tubería:
Lo que muestra un flujo bajo régimen laminar.
v = Q/A = (0.1x10-6 m3/s)/(7.92x10-6m2) = 1.26x10-2m/s = 1.26 cm/s
Donde, A = pR2 = p(0.0015875m)2 = 7.92x10-6m2
Solución inciso b): La caída de presión  entre los dos puntos de la tubería está dada por
La diferencia de altura debida entre los dos tubos manométricos es, entonces:
h = DP/rg = (360Pa)/(800Kg/m3)(9.8m/s2) = 0.045 m = 4.5 cm

VÍDEO DE APOYO PARA REFORZAR EJERCICIOS DE FLUJOS!


https://www.youtube.com/watch?v=rYtzhOu4nV8





lunes, 18 de julio de 2016

Resortes Helicoidales



Que son los resortes helicoidales:  Los resortes o muelles helicoidales son elementos mecánicos que se montan entre dos partes mecánicas de una máquina, con el fin de amortiguar impactos o de almacenar energía y devolverla cuando sea requerida. Consiste en un arrollamiento de espiras de alambre normalmente redondo y de sección cuadrada o rectangular; el material del alambre debe poseer alto límite de elasticidad para que cumpla con las solicitaciones indicadas.
Tipos de resortes helicoidales: 
  • Resortes de tracción o extensión:  Estos resortes, sometidos a cargas de tracción, se caracterizan por tener un ángulo de inclinación a muy pequeño de modo que al estar descargados sus espiras suelen estar en contacto y porque deben contar con un elemento que permita transmitir la carga desde el soporte hasta el cuerpo del resorte. Este problema inicial de diseño puede resolverse colocando un dispositivo externo en los extremos del resorte como ser un tapón roscado o un gancho giratorio, pero de esta forma en el proceso de fabricación se incrementaría considerablemente el costo del producto terminado, por lo que habitualmente se fabrica un gancho fijo en los extremos del resorte con el mismo alambre de las espiras extremas.


Resortes de Compresión: Los resortes helicoidales sometidos a cargas de compresión, se caracterizan por tener un ángulo de inclinación a diseñado de modo que durante la operación sus espiras no entren en contacto y porque a diferencia de los resortes de tracción, eventualmente pueden fallar por pandeo y no necesariamente deben contar con un elemento adicional que permita transmitir la carga desde el soporte hasta el cuerpo del resorte. En la figura 9, se muestran distintos estados de un resorte de compresión. Cuando el mismo está descargado, L0 indica la longitud libre. Al ser sometido a una carga P, el resorte se deforma o reflecta una longitud f y con Lc se indica la longitud comprimida: Lc = L0 - f Cuando la deformación es máxima, de modo que cada espira del resorte está en contacto con la siguiente, entonces la longitud comprimida se denomina Longitud Sólida y se indica con LS.


De torsión: Su función es puntualmente la torsión o girado. Esto se debe a que contiene propiedades muy elásticas, ya que puede almacenar energía mecánica cuando gira y devolverla cuando termina el proceso. La fuerza que libera es directamente proporcional a la cantidad de giros que se produce.


De flexión: se denomina resorte de flexión a un resorte de compresión formado por otro tipo de arandelas o espirales más elásticas con otro montado pero que cumplen la misma función. Se caracterizan por poseer un rasgo distintivo: si una de las arandelas que lo compone se rompe no afecta el funcionamiento del resorte en sí, es decir, puede seguir marchando de la misma manera que antes del altercado.



Características de los resortes helicoidales: 
Las principales características de estos resortes son:
Material del alambre.
Diámetro del alambre.
Diámetro proyectado del helicoide,
Inclinación del helicoide.
Cantidad de espiras,